Can Graph Descriptive Order Affect Solving Graph Problems with LLMs?

Yuyao Ge, Shenghua Liu, Baolong Bi, Yiwei Wang, Lingrui Mei, Wenjie Feng, Lizhe Chen, Xueqi Cheng

Email: yuyao.ge.work@gmail.com

B Institute of Computing Technology, Chinese Academy of Sciences University of California, Merced

Motivation

- In real-world scenarios, the order of textual descriptions significantly influences how humans interpret relationships between entities.
- To better understand, let's abstract relationships between entities into graph representations:

For a standard benzene ring, which of the following two descriptions is easier for humans to understand? $_{\mathrm{C2}}$

Description One

C1-C2, C2-C3, C3-C4, C4-C5, C5-C6, C6-C1

Humans can immediately recognize that this is a benzene ring!

Description Two

C3-C4, C1-C2, C5-C6, C2-C3, C4-C5, C6-C1

Humans need to reorganize the information to understand what it is.

The order of graph description has a significant impact on human understanding of its structure. Does this effect also exist in LLMs?

Graph Description Generation Framework

We designed six types of graph tasks to assess how four graph traversal orders (DFS, BFS, PR, PPR) affect LLMs' reasoning performance.

Reordered Graph Description Reordered in BFS order

Prompt

<Description with BFS>: In an undirected graph, (i, j) means that node i and node j are connected with an edge, and the |edges are: (0, 1), (0, 2),(0, 3), (0, 4), (1, 6), $(2, 5), \dots$

<Cycle Detect>: Q: Is there a cycle in this graph?

LLM: \mathcal{M}

CORA

Acc.

 $70.00_{(-)}$

 $72.00_{(+2.86)}$

 $71.33_{(+1.90)}$

 $75.33_{(+7.61)}$

 $73.33_{(+4.76)}$

 $79.33_{(-)}$

 $82.67_{(+4.21)}$

 $81.33_{(+2.52)}$

 $83.33_{(+5.04)}$

 $82.00_{(+3.36)}$

Order

Random

Random

Citeseer

 $67.33_{(-)}$

 $68.67_{(+1.99)}$

 $68.66_{(+1.98)}$

 $71.33_{(+5.94)}$

 $69.33_{(+2.97)}$

 $68.67_{(-)}$

 $71.33_{(+3.87)}$

 $70.00_{(+1.94)}$

 $71.33_{(+3.87)}$

 $70.67_{(+2.91)}$

Pubmed

Acc.

 $72.00_{(-)}$

 $74.00_{(+2.78)}$

 $77.33_{(+7.40)}$

 $82.67_{(+14.82)}$

 $77.33_{(+7.40)}$

 $69.99_{(-)}$

 $74.00_{(+5.73)}$

 $76.00_{(+8.59)}$

 $76.00_{(+8.59)}$

 $74.67_{(+6.69)}$

< Zero-short CoT>: Let's think step by step.

 $42.86_{(\uparrow 42.18)}$

Orders

Random The edges \mathcal{E} of the graph are shuffled randomly. Breadth-First Search (BFS) Order Sequentialize the edegs with BFS.

Depth-First Search (DFS) Order Sequentialize the edges with DFS.

PageRank (PR) Order Nodes are sorted in descending order by their PageRank scores PR(v), where PR(v) = $\alpha \sum_{u \in \mathcal{N}^{-1}(v)} \frac{PR(u)}{|\mathcal{N}(u)|} + (1 - \alpha)$. For each node, starting with the highest-ranked, edges to its neighbors $u \in \mathcal{N}(v)$ are added to the edge list \mathcal{L}_{PR} .

Personalized PageRank (PPR) Order For PPR, the ranking is

computed as $PR_S(v) = \alpha \sum_{u \in \mathcal{N}^{-1}(v)} \frac{PR_S(u)}{|\mathcal{N}(u)|} + (1 - \alpha) \cdot e_v$.

Random Order

In an undirected graph, (i, j) means that node *i* and node *j* are connected with an edge, and the edges are:

 $(6, 1), (6, 2), (0, 3), (4, 5), \dots$

BFS Order

In an undirected graph, (i, j) means that node *i* and node *j* are connected with an edge, and the edges are:

- (b) Hamilton Path (a) Connectivity Task characteristics determine optimal ordering strategy
 - > Connectivity task need local view
 - > Hamilton Path need global view

Results

Task	Order	Zero-shot	Zero-shot CoT	Few-shot	СоТ	CoT-BAG	Avg.	Sampling
CONN.	Random	73.93(-)	70.71(-)	81.07 ₍₋₎	83.93(-)	82.14 ₍₋₎	78.36(-)	Ego
	BFS	82.14 _(↑11.11)	$87.50_{(\uparrow 23.74)}$	$89.29_{(\uparrow 10.14)}$	$92.50_{(\uparrow 10.21)}$	$95.71_{(\uparrow 16.52)}$	89.43 _(↑14.13)	
	DFS	$79.29_{(\uparrow 7.25)}$	$82.14_{(\uparrow 16.16)}$	$87.14_{(\uparrow 7.49)}$	$88.21_{(\uparrow 5.10)}$	$89.29_{(\uparrow 8.70)}$	$85.21_{(\uparrow 8.75)}$	
	PR	$77.86_{(\uparrow 5.32)}$	$83.57_{(\uparrow 18.19)}$	$85.71_{(\uparrow 5.72)}$	$84.29_{(\uparrow 0.43)}$	$87.50_{(\uparrow 6.53)}$	$83.79_{(\uparrow 6.93)}$	
	PPR	$76.79_{(\uparrow 3.87)}$	$81.07_{(\uparrow 14.65)}$	$83.93_{(\uparrow 3.53)}$	$84.64_{(\uparrow 0.85)}$	$86.07_{(\uparrow 4.78)}$	$82.50_{(\uparrow 5.29)}$	
CYCLE	Random	51.79 ₍₋₎	53.57 ₍₋₎	65.36(-)	75.71 ₍₋₎	76.07 ₍₋₎	64.50(-)	
	BFS	$55.71_{(\uparrow 7.57)}$	$56.07_{(\uparrow 4.67)}$	$79.29_{(\uparrow 21.31)}$	$86.07_{(\uparrow 13.68)}$	$86.43_{(\uparrow 13.62)}$	$72.71_{(\uparrow 12.73)}$	Forest Fire
	DFS	$52.14_{(\uparrow 0.68)}$	$53.93_{(\uparrow 0.67)}$	$73.21_{(\uparrow 12.01)}$	$79.29_{(\uparrow 4.73)}$	$81.07_{(\uparrow 6.57)}$	$67.93_{(\uparrow 5.31)}$	
	PR	$55.36_{(\uparrow 6.89)}$	$56.43_{(\uparrow 5.33)}$	$70.36_{(\uparrow 7.65)}$	$80.36_{(\uparrow 6.14)}$	$83.21_{(\uparrow 9.39)}$	$69.14_{(\uparrow 7.20)}$	
	PPR	$54.29_{(\uparrow 4.83)}$	$55.00_{(\uparrow 2.67)}$	$70.00_{(\uparrow 7.10)}$	$79.29_{(\uparrow 4.73)}$	$80.00_{(\uparrow 5.17)}$	$67.72_{(\uparrow 4.99)}$	
НАМРАТН	Random	10.71 ₍₋₎	15.36 ₍₋₎	40.00(-)	46.07 ₍₋₎	45.36 ₍₋₎	31.50 ₍₋₎	Dro
	BFS	$20.00_{(\uparrow 86.74)}$	$20.71_{(\uparrow 34.83)}$	$57.86_{(\uparrow 44.65)}$	$58.57_{(\uparrow 27.13)}$	$57.14_{(\uparrow 25.97)}$	$42.86_{(\uparrow 36.05)}$	
	DFS	$33.93_{(\uparrow 216.81)}$	$37.50_{(\uparrow 144.14)}$	$67.50_{(\uparrow 68.75)}$	$63.93_{(\uparrow 38.77)}$	$59.29_{(\uparrow 30.71)}$	$52.43_{(\uparrow 66.44)}$	ou
	PR	$15.00_{(\uparrow 40.06)}$	$19.29_{(\uparrow 25.59)}$	$48.93_{(\uparrow 22.32)}$	$55.00_{(\uparrow 19.38)}$	$50.00_{(\uparrow 10.23)}$	$37.64_{(\uparrow 19.50)}$	
	PPR	$16.43_{(\uparrow 53.41)}$	$18.93_{(\uparrow 23.24)}$	$50.00_{(\uparrow 25.00)}$	$53.93_{(\uparrow 17.06)}$	$50.36_{(\uparrow 11.02)}$	$37.93_{(\uparrow 20.41)}$	Path
TOPOSORT	Random	28.93(-)	31.07(-)	58.21(-)	56.07 ₍₋₎	60.36(-)	46.93(-)	I atii
	BFS	43.21 _(↑49.36)	$40.36_{(\uparrow 29.90)}$	$67.14_{(\uparrow 15.34)}$	$61.43_{(\uparrow 9.56)}$	$65.00_{(\uparrow 7.69)}$	55.43(18.11)	Two New
	DFS	$42.14_{(\uparrow 45.66)}$	$48.93_{(\uparrow 57.48)}$	$77.86_{(\uparrow 33.76)}$	$74.29_{(\uparrow 32.50)}$	$72.86_{(\uparrow 20.71)}$	$63.21_{(\uparrow 34.71)}$	
	PR	$35.36_{(\uparrow 22.23)}$	$35.71_{(\uparrow 14.93)}$	$71.07_{(\uparrow 22.09)}$	$58.21_{(\uparrow 3.82)}$	$65.36_{(\uparrow 8.28)}$	$53.14_{(\uparrow 13.24)}$	ordered
	PPR	$37.14_{(\uparrow 28.38)}$	$39.64_{(\uparrow 27.58)}$	$72.50_{(\uparrow 24.55)}$	$58.93_{(\uparrow 5.10)}$	$66.43_{(\uparrow 10.06)}$	$54.93_{(\uparrow 17.05)}$	
SРАТН	Random	20.00(-)	25.00(-)	26.07(-)	38.93(-)	40.71(-)	30.14(-)	- 80
	BFS	35.36 _(↑76.80)	$42.50_{(\uparrow 70.00)}$	45.36 _(↑73.99)	$67.50_{(\uparrow 73.39)}$	$65.71_{(\uparrow 61.41)}$	51.29 _(↑70.15)	6
	DFS	$32.14_{(\uparrow 60.70)}$	$34.29_{(\uparrow 37.16)}$	$45.00_{(\uparrow 72.61)}$	$58.57_{(\uparrow 50.45)}$	$57.14_{(\uparrow 40.36)}$	45.43 _(↑50.71)	(%) 22
	PR	30.36(151.80)	43.93(175.72)	38.93(149.33)	43.93(+12.84)	48.93((20.19)	41.21((36.74)	္ဘဲ 4

Probability-based orders outperform traversal-based orders.

Path Overlapping or Better Understanding?

wo New Orders: Shortest Path Order (edges ordered by the actual shortest path) and Longest Path Order (edges ordered by the longest path from source to target).

Path overlap affects performance - shortest order with highest overlap achieves best performance, while longest with lowest overlap performs worst. Ordering enhances understanding beyond overlap - DFS has higher overlap than BFS, yet BFS outperforms DFS

Simpler tasks show greater robustness, while complex tasks are more sensitive to description order.

Conclusion

- Graph Descriptive Order greatly affects LLMs' Ability of Solving Graph Problems
- Simple Tasks are more robustness to descriptive order, while complex tasks are more sensitive.
- There is no specific order that has the best performance across all tasks, as task characteristics determine the optimal ordering strategy.
- Structured description ordering can enhance LLMs' understanding of graphs.

 $32.50_{(\uparrow 62.50)}$

baseline.

Complex tasks benefit more from ordering.

 $44.64_{(\uparrow 78.56)}$

Different prompting methods maintain ordering benefits

Ordered descriptions consistently outperform random

 $42.14_{(\uparrow 61.64)}$

 $45.36_{(\uparrow 16.52)}$

 $49.64_{(\uparrow 21.94)}$