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Abstract
Recently, there have been significant developments in the realm of novel view synthesis
relying on radiance fields. By incorporating the Splatting technique, a new approach named
Gaussian Splatting has achieved superior rendering quality and real-time performance. How-
ever, the training process of the approach incurs significant performance overhead, and the
model obtained from training is very large. To address these challenges, we improveGaussian
Splatting and propose Frequency-Importance Gaussian Splatting. Our method reduces the
performance overhead by extracting the frequency features of the scene. First, we analyze
the advantages and limitations of the spatial sampling strategy of the Gaussian Splatting
method from the perspective of sampling theory. Second, we design the Enhanced Gaussian
to more effectively express the high-frequency information, while reducing the performance
overhead. Third, we construct a frequency-sensitive loss function to enhance the network’s
ability to perceive the frequency domain and optimize the spatial structure of the scene.
Finally, we propose a Dynamically Adaptive Density Control Strategy based on the degree
of reconstruction of the background of the scene, which adaptive the spatial sample point
generation strategy dynamically according to the training results and prevents the genera-
tion of redundant data in the model. We conducted experiments on several commonly used
datasets, and the results show that our method has significant advantages over the original
method in terms of memory overhead and storage usage and can maintain the image quality
of the original method.

Keywords Real-time rendering · Radiance field · Novel view synthesis · Lightweight

1 Introduction

Recently, significant advancements have been made in Neural Radiance Field (NeRF) [21]
methodologies. Nevertheless, a majority of the NeRFmethodologies rely on implicit volume
rendering approaches [7, 20], which create bottlenecks in regards to performance overhead

B Xingquan Cai
caixingquan@ncut.edu.cn

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-024-18679-x&domain=pdf
http://orcid.org/0000-0002-5996-2728


Multimedia Tools and Applications

and rendering in real-time. Scholars and experts are researching ways to use explicit rep-
resentations of scenes in NeRF to speed up its rendering and training. Among these, The
Gaussian Splatting [13] technique is currently more effective than the traditional implicit-
rendering-based NeRF. It offers nice performance and rendering quality, owing to its explicit
scene representation approach.

Despite its potential, Gaussian Splatting encounters several challenges. Firstly, it poorly
represents high frequency information. Secondly, it lacks sparsity in the spatial structure,
leading to an exceedingly large model size, especially evident in outdoor scenarios. Thirdly,
it generates a significant amount of redundant data during training iterations. These combined
factors result in extremely high VRAM consumption and a high computational overhead.
Consequently, training and rendering outcomes on consumer-grade graphics cards like the
RTX4060 become suboptimal, severely constraining its potential for deployment on multi-
media devices. Therefore, lightweight improvements are urgently required to address these
challenges.

To address the inherent limitations of Gaussian Splatting, particularly its inefficiency in
representing high-frequency details and the consequent bloated model sizes, our work pivots
on a crucial innovation: the integration of frequency domain information into the scene
representation. By strategically incorporating frequency domain information, our method
significantly reduces the Gaussians needed for accurate scene depiction. The essence of our
approach lies in its ability to discern most informative frequency components of the scene,
thereby optimizing the Gaussian distribution for a more efficient and effective training and
rendering process.

Our primary goal is to alleviate the computational burden of Gaussian Splatting in both
training and rendering phases, refining the spatial representation of the radiance field without
sacrificing rendering quality. While the original Gaussian Splatting method delivers com-
mendable visual quality and rendering performance, it suffers from a hefty performance
overhead during training. Moreover, models derived from training on select large scene
datasets are excessively bulky, often exceeding 1 GB. This is dozens of times larger than
models from traditional techniques.

In this paper, we introduce three primary enhancements. First, we design the Enhanced
Gaussian with greater expressiveness for frequency information, which reduces the perfor-
mance overhead required to convey high-frequency information in the scene by optimizing
the model’s ability to express this information. Second, we construct a frequency-sensitive
loss function, which strengthens the network’s perception of the scene’s frequency informa-
tion to optimize the sparse spatial structure of the radiance field. Finally, our dynamically
adaptive density control strategy adjusts sample point generation based on scene background
reconstruction, minimizing redundant data.

• We introduce the Enhanced Gaussian, a modified version of the Gaussian, designed
specifically to better capture high-frequency information. This not only improves repre-
sentation but also reduces the performance overhead typically associated with detailing
high-frequency nuances.

• We propose a frequency-sensitive loss function. This function amplifies the network’s
ability to discern frequency-domain information within a scene, optimizing its spatial
structure in the process.

• We develop a dynamically adaptive density control strategy. This strategy, grounded
on the degree of scene background reconstruction, effectively curtails the generation of
superfluous data.

123



Multimedia Tools and Applications

2 Related works

Neural Radiance Fields (NeRF)-based novel view synthesis techniques are garnering increas-
ing attention in the fields of computer vision and computer graphics. The original NeRF
method employsMultilayer Perceptron (MLP) [32] and implicit volume rendering techniques
to render new images from novel viewpoints. NeRF achieves better visual quality representa-
tion compared to other traditional novel view synthesis methods [1–3]. Subsequent work on
improving and optimizing NeRF demonstrates its excellent potential. However, the original
NeRF approach demands considerable computational resources and training time, and it can
only deal with some small-scale scenes.

Scholars have initially addressed the inherent limitations in the NeRF [28, 33]. For
instance, Mip-NeRF solves the aliasing issue in NeRF and improve rendering speed when
dealing with images of different resolutions. This method achieves anti-aliasing effects and
multi-scale. Although the method has achieved improvements in both quality and efficiency
compared to the original NeRF, it still falls short of real-time rendering standards [4]. The
method also faces challenges for dealingwith unbounded scene, themip-NeRF360 [5]method
was proposed to address this issue to some extent. There are also some other works attempt
to extend NeRF for dynamic scene rendering [8, 16, 17, 27, 35].

Other research has focused on leveraging the characteristics of theNeRFmethod to achieve
various unique effects [22, 34] or develop effective tools [11, 15, 19, 26, 34, 38]. e.g.,
NeRFocus explicitly models thin lens imaging and derives composite cones that can be used
to render each pixel with an equivalent lens effect, thus implement simulating focal length
transformations of physical cameras in NeRF.

Currently, experts and scholars are primarily concentrating on optimizing the NeRF
method for both rendering and training speeds.Many studies focus on improving the capacity
of MLP [6, 12, 24, 31]. e.g., InstantNGP proposes a coding method based on hash search,
which only requires a small-scale neural network to achieve the effect of a fully connected
network without compromising accuracy. With this coding method, InstantNGP is able to
create an efficient training and rendering process [23]. Plenoxels represents the scene as
a sparse 3D grid with spherical harmonics. This representation utilizes gradient methods
and normalization, optimizing it through calibrated images without any neural components.
Plenoxels can maintain the same rendering quality as NeRF while reducing optimization
time by two orders of magnitude [9].

our method is directly inspired by Gaussian Splatting, a method utilizes an interleaved
control of 3D Gaussian and their densities, and use the explicit Splatting rendering algo-
rithm [29] to render the novel view, to separate the rendering stage from the neural network
component.

As shown in Fig. 1, in each iteration, the network first uses the Splatting technique to render
the point cloud data into 3D Gaussian and forming a complete image. Then, the rendered
image is compared with ground truth image to calculate the loss. Finally, the geometric
information of the point cloud data is adaptively adjusted based on the loss. Due to the use
of the explicit representation of the 3D scene, this method has a significant advantage in
rendering speed compared to traditional methods based on implicit volume rendering. On
multiple datasets, it exhibits better visual quality and higher training efficiency.

However, the original method’s inefficient spatial structure of sample points leads to
substantial performance overhead during network iterations. The most evident manifestation
of this is that themodel occupies a large space, and the trainedmodel size on some large-scale
datasets exceeds 1GB, which is dozens of times larger than other implicit NeRF methods.
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Fig. 1 Pipeline of Gaussian Splatting. Pipeline of Gaussian Splatting. First, initial sample points are obtained,
either from a random source or from Structure-from-Motion (SfM)[30]. Then, in each iteration, the sample
points are rendered into images, and are adjusted based on the rendered images. By repeating this process
iteratively, this method achieves higher image quality and significantly outperforms traditional methods in
terms of training time

To address the issues in Gaussian Splatting, we have implemented lightweight processing
in this paper, significantly reducing the performance overhead of the neural network and the
size of the model. Experimental results have shown that the improved method exhibits excel-
lent performance in terms of performance overhead, while the rendering quality remains
nearly unchanged compared to the original approach. In certain specialized scenes, our
improved method even outperforms the original method in terms of rendering quality.

3 Methodology

The Gaussian Splatting has achieved better performance and quality in the field of novel
view synthesis compared to other NeRF methods. However, there is still much room for
improvement in terms of performance overheads. This is due to the poor representation of
high-frequency information, insufficient spatial sparsity of the scene, and the large amount
of redundant data generated during the training process in the method. In this section, we first
analyze the advantages and shortcomings of the spatial sampling strategy of the Gaussian
Splatting using sampling theory. We then detail the three proposed improvements: design-
ing an Enhanced Gaussian with improved frequency expression capability, constructing
frequency-sensitive loss functions, and introducing a dynamically adaptive density control
strategy based on the degree of scene background reconstruction.

3.1 Analysis of spatial sampling strategy in gaussian splatting

The use of neural radiance field can be regarded as performing Monte Carlo integration on
the 3D scene:

scene =
∫

c(P)dP = V

N

n∑
i=1

c(Pi ) (1)

As shown in the above, Pi represents the position information of the i th sample point,
V is the volume of the sampling area, N is the number of sample points, and c(P) is the
scene information contained in the sample point P . In NeRF, the scene information for each
sample point is iteratively obtained by the neural network, with all sample points contributing
to the 3D scene reconstruction. The traditional neural radiance field method employs volume
rendering with stationary sampling points, which necessitates a significant number of sample
points to be placed in the scene for enhancing the rendering quality.

However, since the placement of sample points doesn’t account for the scene’s spatial
characteristics, many points contribute little to the overall scene representation, even though
having a large number of them can improve accuracy. These traditional neural radiance fields
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methods incur high performance overheads and often struggle to accurately represent scene
information. Although in some studies, researchers have improved the sampling process
of scene information using layered sampling methods, e.g., mip-NeRF360 adopts a non-
linear sampling method based on scene depth, these sampling methods still generate a large
number of redundant sample points in the scene, because they still adopt an implicit 3D scene
representation and require iterative computation to solve the scene information.

In Gaussian Splatting, the use of explicit spatial representation offers greater flexibility
in the number and geometry of sample points compared to traditional implicit methods.
Specifically, the sampling range of each sample point is controlled by a Gaussian and its
covariance matrix, as shown in equation:

scene =
∑

G(P) =
∑

exp(−1

2
(X(P))T σ(P)(X(P))) (2)

In the equation, G(P) represents the Gaussian at sample point P, and σ(P) represents
the covariance matrix of P . The covariance matrix can be expressed using the geometric
information of the sample points:

σ(P) = R(P)S(P)(S(P))T (R(P))T (3)

X(P), R(P), S(P) represent the position vector, rotation matrix, and scaling matrix
of point P. By adjusting σ(P), Gaussian Splatting can selectively sample scene informa-
tion, eliminating irrelevant sample points and adding more points for complex regions.
This approach significantly optimizes the training and rendering speed of neural networks
compared to traditional implicit-rendering-based NeRF methods. We further visualize the
advantages of the Gaussian Splatting method over traditional methods in terms of sampling
strategy in Fig. 2.

However, this strategy has drawbacks. Farther from the Gaussian’s center, the gradient
diminishes, and the function’s change smoothens, leading to potential inaccuracies. When
using it to fit specific scene information, this information tends to diffuse outward due to the
smooth gradient, leading to errors in the final rendering effect. We refer to this error as the

Fig. 2 A 2D simplified example illustrating the sampling methods in traditional NeRF and Gaussian Splatting.
The x-axis represents specific positions in the scene, while the y-axis represents the information contained in
those positions. In this Gaussian Splatting example, we only use 3 Gaussians to achieve a relatively accurate
fit to the scene. In contrast, traditional NeRF requires more than 20 sample points to achieve a similar level of
accuracy
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’High-Frequency Diffusion Phenomenon’. While simple clamping methods can mitigate the
diffusion of the Gaussian to some extent, the covariance of matrices of the Gaussians in space
vary. Therefore, clamping any dimension will result in a loss of accuracy. To capture high-
frequency scene details accurately, the network in original method will generate numerous
adjacent or overlapping sample points at high-frequency regions. This counters the diffusion
issue from gradient changes and bolsters high-frequency representation, but this strategy will
greatly increase the performance overhead of the neural network and it is difficult to achieve
good results.

The ’High-Frequency Diffusion Phenomenon’ elucidates a challenge in using Gaussian
Splatting for training. Specifically, for large-scale outdoor scenes, the neural network’s learn-
ing rate must decrease to ensure convergence. This is because large-scale outdoor scenes
usually contain a large amount of high-frequency information, and the number of sample
points generated by the neural network at a high learning rate is too few to effectively
weaken the High-Frequency Diffusion Phenomenon in large-scale outdoor scenes, making
it difficult for the neural network to fit the scene information well.

On the other hand,in models trained with the original method, numerous sample points
in low-frequency areas contribute minimally to rendering. We call these points Low-
Contribution Sample Points (LCSPs). The size of the LCSPs is extremely small, and these
points can often be replaced by a small number of larger sample points without reducing the
rendering quality of the scene. We believe that these LCSPs are caused by the insufficient
perceptual ability of the neural network for different frequency information in the scene.

As illustrated in Fig. 3, the neural network, lacking the capability to directly perceive
scene frequency, might misinterpret low-frequency information as clustered high-frequency
data. This leads to the generation of redundant sample points, these are LCSPs.

Incorporating frequency domain information into Gaussian Splatting is a strategic move
to address the limitations of the original method. By enhancing each Gaussian’s expression
and encapsulating high-frequency details more effectively, our method seemingly increases
the computational load and memory footprint per Gaussian. However, this apparent increase
is counterbalanced by a significant reduction in the total number of Gaussians required for
scene representation. This counterintuitive strategy results in an overall boost in performance
and a decrease in memory consumption. The enhanced capacity of each Gaussian to accu-
rately represent high-frequency information endows our method with a distinct advantage
in rendering complex scenes, surpassing the original approach in both efficiency and detail
fidelity. We will provide a detailed introduction to these methods in the following text.

Ground Truth Single-Sampling Situation Multiple-Sampling Situation

Fig. 3 An example of neural networks generating numerous LCSPs at low-frequency information. the spatial
structure’s rationality was compromised due to the non-linear relationship between the number of Gaussians
and the degree of scene reconstruction fidelity. Beyond a certain density threshold, increasing the number of
Gaussians yields diminishing returns in scene detail enhancement. This inefficiency stems from the original
method’s inadequate adaptive density control strategy and its neglect of frequency domain information, leading
to excessive Gaussian density and, consequently, substantial redundant memory overhead. This redundancy
not only burdensmemory resources but also indirectly hampers rendering speed and prolongs training duration
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3.2 Design of enhanced gaussian

he Gaussian’s smooth gradient’s limited representation capability leads to the High-
Frequency Diffusion Phenomenon. To address this issue, efforts need to be made to enhance
the model’s ability to represent high-frequency information more effectively. In Gaussian
Splatting, we introduce the Enhanced Gaussian Gh(P) to replace the conventional Gaussian
G(P). The Enhanced Gaussian is:

Gh(P) = exp(−1

2
[(X(P))T σ(P)(X(P))]q) (4)

In the equation, q represents the enhancement coefficient of the Enhanced Gaussian. By
controlling the size of this coefficient, the network can easily control the sample point’s
ability to express different frequency information.

As the enhancement coefficient rises, the gradient of the Enhanced Gaussian sharp-
ens, allowing it to capture abrupt color transitions in images, representing high-frequency
information more effectively. While the Enhanced Gaussian is not immune to the High-
Frequency Diffusion Phenomenon, its effect is so minimal that it can be largely ignored.
Furthermore, compared to the general Gaussian, the Enhanced Gaussian only introduces a
constant-level additional computational overhead, which, when compared to the performance
savings achieved by using this method, is negligible. In addition, Enhanced Gaussian has the
same differentiability property as the general Gaussian and is equally simple and control-
lable, which means the network can easily iterate on the enhancement coefficient. Figure 4
demonstrates the advantage of the Enhanced Gaussian over the general Gaussian in fitting
high-frequency information.

The Enhanced Gaussian is designed with a focus on the inherent capability of Gaussian
functions to represent high-frequency information. By optimizing the formulation of Gaus-
sians, we enhance their ability to capture and express the intricate details within a scene.
This optimization allows for a more accurate and detailed scene representation with fewer
Gaussians, directly addressing the issue of excessive Gaussian density and the associated
memory overhead.

Fig. 4 Comparison of fitting capability for high-frequency information between Gaussian and Enhanced
Gaussian. The x-axis represents specific positions in the scene, while the y-axis represents the information
contained in those positions. The Enhanced Gaussian’s edge gradient is dynamically adjustable, maintaining
differentiability, which enhances its capability to represent high-frequency scene details. This makes the
Enhanced Gaussian more adept at representing diverse scene information, particularly high-frequency details,
compared to a standard Gaussian

123



Multimedia Tools and Applications

While the Enhanced Gaussian introduces increased complexity in both expression and
computation compared to standard Gaussian functions, its application yields a substantial
reduction in the number of Gaussians required to represent high-frequency information. This
mitigates the performance trade-offs associated with Enhanced Gaussian, making it a viable
solution. Despite its increased intricacy, Enhanced Gaussian remains an efficient means to
capture intricate high-frequency details within a scene while simultaneously reducing the
computational burden and memory overhead.

According to the equation, it is known that when the enhancement coefficient of the
Enhanced Gaussian reaches 16, a good representation effect of high-frequency information
in the scene has been achieved. In this paper’s implementation, for performance consider-
ation, we limit the enhancement coefficient to integers between 1 and 16. Although setting
the enhancement coefficient to a floating-point value between 0 and 1 might improve rep-
resentation of very low-frequency details, such precision is unnecessary for low-frequency
data and does not justify the additional performance overhead. The marginal improvement
doesn’t justify the added performance overhead compared to using integer coefficients.

3.3 Construction of frequency-sensitive loss function

The original method combines the structural similarity and photometric error of the image
as a loss function, as shown in Equation:

L = (1 − λ)L1 + λLD−SSI M (5)

Here, λ is a constant that controls the balance between the two terms. While this loss
function effectively measures the similarity between the rendered result and the actual image,
it does not directly integrate frequency information into the neural network.We acknowledge
prior works that propose methods for normalizing frequency information in neural networks
[18, 25, 37], However, these methods are tailored for NeRF-based approaches using implicit
scene representations, focusing on encoding high-frequency positional data more efficiently
into the network. In contrast, our goal is to reduce the model’s size, and we are particularly
concerned with penalizing unnecessary dense sampling points resulting from low-frequency
information.

To enhance the neural network’s ability to perceive scene frequency information, this paper
proposes a frequency-sensitive loss function that is easy to utilize without introducing added
overhead. Moreover, this frequency-sensitive loss function exhibits good transferability.

For the rendered image G obtained after training, we first use Fourier transforms to divide
the image into high-frequency components GH and low-frequency components GL based
on a frequency threshold constant t . In the same way, we obtain the high-frequency compo-
nent GTH and the low-frequency component GTL of the GT image. Then, we calculate the
structural similarity index of the high-frequency component image, low-frequency compo-
nent image, and original image separatelyLHD−SSI M , LLD−SSI M , LD−SSI M , and combine
them with the photometric error to obtain:

L = (γ + ζ )LD−SSI M + γ LHD−SSI M + ζ LLD−SSI M

2γ + 2ζ
λ + L1(1 − λ) (6)

Here, γ and ζ serve as sensitivity coefficients for high-frequency and low-frequency
information, respectively. These coefficients modulate the neural network’s sensitivity to
the different frequency components. The Frequency-Sensitive Loss Function proposed in
this work is differentiable. Each of its constituent terms, including the structural similarity
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indexes (LHD−SSI M and LLD−SSI M ), the photometric error terms (L1 and LD−SSI M ), and
the coefficients (γ and ζ ), are themselves continuous and differentiable functions. Combining
these differentiable terms linearly in the loss function preserves its differentiability. Therefore,
the Frequency-Sensitive Loss Function supports gradient-based optimization during training.

This loss function’s innovation lies in its ability to divide the rendered image into high-
frequency and low-frequency components (GH and GL ) based on a frequency threshold.
A similar separation is applied to the ground truth (GT ) image. As shown in Fig. 5, By
doing so, we can directly visualize the scene’s complexity. When comparing these frequency
components, it becomes evident how frequency information impacts scene representation.
Unlike traditional methods that focus solely on photometric errors, our approach considers
the relationship between Gaussian density and scene complexity.

We believe that the high-frequency coefficient of the Frequency-Sensitive Loss should
be set slightly higher than the low-frequency coefficient. This is because, when sampling
low-frequency information, a relatively lower sampling density can adequately represent the
low-frequency information, while a higher sampling density is required to better represent
the high-frequency information. By setting the high-frequency coefficient slightly higher
than the low-frequency coefficient, the neural network will have a higher inclination to learn
the high-frequency information in the scene. This conclusion is supported by the Frequency
Principle (F-Principle) [36]of neural networks.

Since the structural similarity indexes (LHD−SSI M and LLD−SSI M ) are measured sep-
arately in the high-frequency and low-frequency regions, this loss function intuitively
optimizes the spatial structure of the neural radiance field scene during the neural network’s
iteration. This optimization effectively prevents the oversampling problem in low-frequency

Fig. 5 When fitting relatively simple information within a scene, disregarding frequency domain information
results in Gaussian density having little decisive impact on the fitting quality. However, when incorporating the
scene’s frequency information into consideration, the use of lower-density Gaussians demonstrates superior
fitting performance for the scene. This illustrates that the introduction of frequency information into the loss
function indeed plays a role in constraining Gaussian densities within the scene, reducing memory overhead
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information, resulting in sparser and more reasonable sample point distributions in space.
Figure 6 illustrates how our proposed frequency-sensitive loss function optimizes themodel’s
spatial structure.

The introduction of Frequency-Sensitive Loss Functions ensures that the spatial density
distribution of Gaussians aligns with the complexity of the scene. This alignment man-
dates that areas of the scene with higher complexity and richer high-frequency content are
represented with a denser distribution of Gaussians, whereas simpler areas require fewer
Gaussians. This adaptive approach to Gaussian distribution significantly reduces the redun-
dancy observed in the original method, where the density of Gaussians was not necessarily
reflective of the scene’s complexity.

3.4 Dynamically adaptive density control strategy

In Gaussian Splatting, the density control of scene sampling depends on two independent
strategies: Split and Clone. The Split strategy is used to handle situations where the sample
points result in an excessive reconstruction of the scene. In such cases, when a Gaus-
sian becomes too large to represent a certain geometric shape, it is split into two smaller
Gaussians. On the other hand, the Clone strategy addresses situations where the scene is
under-reconstructed. When a Gaussian becomes too small to represent a certain geometric
shape, a Gaussian of the same size is generated in the neighboring position of this Gaussian.

In the early stages of training with the original method, the Gaussian splatting process has
not fully reconstructed the scene’s simple background. Many Gaussians represent only small
portions of space, and the Cloned Gaussians could be effectively merged to represent larger,
nearly identical regions simultaneously. Conversely, as the scene reconstruction approaches
completion, applying Splits to regions already reconstructedwould further increase theGaus-
sian density in those areas. The original method’s size-based restrictions for Split and Clone
operations on Gaussians seemed arbitrary and lacked adaptability to the scene’s evolving
reconstruction. They did not account for the evolving nature of Clone and Split operations
throughout the scene reconstruction process. Given the number of sample points in the scene,
encountering these minor Split and Clone issues becomes statistically inevitable.

Ground Truth Single-Sampling Situation Multiple-Sampling Situation

Fig. 6 The working principle example of Frequency-Sensitive Loss. Due to the introduction of frequency
domain perception, the neural network will naturally avoid fitting low-frequency information with a large
number of sample points. In this example, the neural network prefers using a single sample point to form
an image. This is because images formed with multiple sample points introduce excessive high-frequency
information which makes it have a larger error compared to the image formed by using a single sample point
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While the original method restricts the execution of Split and Clone operations based
on sample point size, this limitation proved unsatisfactory. In the original method, a single
constant limit controlled the size of sample points eligible for Split and Clone. This caused
challenges in preventing LCSP generation with a small limit and compromised rendering
quality with a large limit.

To address this issue, we have developed a dynamically adaptive density control strategy
that adapts throughout the training process. This strategy aims to prevent the generation of
LCSPs while minimizing any negative impact on the training quality. For a given sample
point P, we calculate its Split weight f 1(P) and Clone weight f 2(P) using these equations,
respectively:

f 1(P) = L

(α1L + β1)2
(7)

f 2(P) = L(α1L + β1)
2 (8)

These weights help determine how the point should be handled in the training process. In
the equations, L is the numerical value of the forward propagation loss function, which can
indicate the degree of scene reconstruction. αi and βi are constants. During adaptive density
control, only sample points with f 1(P) greater than 1 can undergo Clone, while only sample
points with f 2(P) greater than 1 can undergo Split.

In comparison to the originalmethod, our approach takes into account the progress of scene
reconstruction and dynamically adjusts the usage of Clone and Split strategies based on the
stage of scene reconstruction. This significantly mitigates the issue of excessive Gaussian
density caused by over-Cloning in the early stages and over-Splitting in the later stages of
scene fitting. This macro-level inclusion of the frequency domain in Gaussian generation
considerations highlights a key difference between our Gaussian and the original Gaussian.

TheDynamicallyAdaptiveDensityControl Strategy imposes direct constraints on the gen-
eration of Gaussians during different training phases. By dynamically adjusting the threshold
for Gaussian generation based on the evolving needs of the scene reconstruction, this strategy
prevents the unnecessary proliferation of Gaussians. This targeted control not only enhances
the training efficiency by focusing computational resources where they are most needed but
also contributes to the overall reduction in model size and memory usage.

4 Evaluations and experiments

In this section, we first introduce the preliminary preparations for the experiment. Next,
we designed a feasibility evaluation experiment to assess model size compression without
sacrificing rendering quality. Next, we assessed the quality of our method by comparing it
with other approaches. Finally, we conducted ablation experiments to demonstrate the effects
of our various improvement steps.

4.1 Experimental preparation

4.1.1 Datasets

To prepare for the experiments, we carefully set up the experimental environment and collect
the necessary datasets. We ensure that the training and testing data are representative of
various scenes. The following datasets were used in the experiment.
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Synthetic NeRF. This is the dataset used in the paper on the NeRF. The Synthetic NeRF
dataset consists of 8 simple synthetic scenes: chair, drums, ficus, hotdot, Lego, materials,
mic, and ship. This paper conducted experiments on all these scenes. Among them, drums
and materials scenes are often used to test the model’s ability to fit reflected light, as they
both have specular reflection materials.

Tanks& temples [14]. TheTanks& temples dataset includesmultiple open outdoor scenes.
In this paper’s experiment, only the Train and Truck scenes were utilized. We obtained the
dataset from the link provided by Plenoxels. The Train scene comprises 258 images for the
training set, while the Truck scene consists of 226 images for the training set.

DeepBlending [10]. TheDeepBlendingdataset is fromDeepBlending for Free-Viewpoint
Image-Based Rendering, which contains several indoor and outdoor scenes, and in this paper,
only the Playroom and DRJOHNSON scenes are used, which are both indoor scenes and
have a lot of high-frequency information. The DRJOHNSON and Playroom scenes contain
260 and 226 images, respectively.

Mip-NeRF 360. This is the dataset used in the paper on the Mip-NeRF 360 method. The
dataset has a total of several large scale complex scenes captured using a professional camera,
and our experiments are conducted on bicycle, counter, kitchen, garden, bonsai, stump, room
and treehill. Each of these scenes provides hundreds of images. This dataset, commonly used
to evaluate the NeRF method’s performance with large-scale scenes, highlights the bicycle
and stump scenes as the most challenging to synthesize.

4.1.2 Parameter settings and hardware configuration

To better compare the performance improvements presented in this paper, the same hyper-
parameter configuration as the original Gaussian Splatting method paper was used in our
experiments. All experimental results were obtained using an NVIDIA 4060 GPU. However,
due to differences in experimental environments, the original data from each method could
not be used directly in our experiments. Instead, we downloaded the implementations of
these methods from Github and obtained the experimental data by running them in our local
experimental environment.

4.1.3 Evaluating indicators

In our experiments, we follow the design of the original methodology and use the eighth
image of each dataset as a test set for consistent and meaningful comparisons. We adopt
PSNR, L-PIPS and SSIM, three common parameters in the field of NeRF, as metrics to
evaluate the quality of the generated images. Building upon an existing method, this paper
also evaluates VRAM usage and model size as metrics in the experiments

4.2 Feasibility evaluation experiment

To assess the feasibility of representing scenes with high quality using fewer sample points,
we designed a feasibility evaluation experiment. In this experiment, we train the original
method on large-scale outdoor scenes, like gardens and stumps, across multiple iterations.
By limiting themaximumnumber of sample points,we aim to test the potential of representing
scene information with fewer sample points. The experimental data is shown in Table 1.

As illustrated in Table 1, MSPR means Maximum Sample Point Ratio, which represents
ratio of the maximum number of sample points in the model in this round of experiments
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Table 1 Results of feasibility evaluation experiment

Dataset MSPR Iterations PSNR(Restricted) PSNR(Unrestricted, Iterations=30K)

garden 0.1 30K 25.22 27.58

0.5 30K 26.09

0.5 100K 26.31

0.5 300K 26.72

stump 0.1 30K 23.20 26.19

0.5 30K 25.01

0.5 100K 25.42

0.5 300K 25.83

bicycle 0.1 30K 22.41 25.32

0.5 30K 23.63

0.5 100K 24.11

0.5 300K 24.45

treehill 0.1 30K 20.48 22.47

0.5 30K 21.22

0.5 100K 21.69

0.5 300K 22.08

compared to the total number of sample points in the unrestricted model, and Iterations
represents the number of iterations of training. From the experimental data, we observe that
themodelwith restricted sample points, evenwithout additional optimization, showsminimal
difference in rendering quality after numerous iterations compared to the unrestricted model.
Analysis shows that this is because when the number of sample points is restricted, a large
number of iterations can reduce the number of LCSPs to some extent. However, since the
original method cannot express high-frequency information in scenes at a small cost, the
rendering quality of the restricted model is always inferior to that of the unrestricted model.

The experimental results suggest that achieving high-quality rendering with a limited
number of sample points is feasible. Furthermore, we posit that models trained using the
original method contain significant redundant data. Even after eliminating this redundancy,
satisfactory rendering results are achievable.

4.3 Quality evaluation experiment

In our Quality Evaluation Experiment, we meticulously assessed image quality and resource
utilization across various scenes. Image quality was evaluated using PSNR and SSIM for
accuracy, and LPIPS for perceptual similarity, while resource utilization was gauged through
Memory Usage (Mem) for storage space, video memory usage during training(VARM), and
FPS for real-time rendering performance. Thesemetrics were presented in two distinct sets of
tables: ’Quality Results of the Quality Evaluation Experiment’ for PSNR, SSIM, and LPIPS,
and ’Resource Utilization Results of the Quality Evaluation Experiment’ for Mem, FPS, and
VRAM.

We conducted quality evaluation experiments on both small-scale (e.g., Lego, Mic, Ship,
Drums, Ficus) and large-scale scenes (e.g., garden, Trunk, bicycle, DRJOHNSON) to assess
our proposed method’s effectiveness compared to the original approach. The experimental
results compared to the original method in small-scale scenes are presented in Tables 2 and
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Table 2 Quality results of quality
evaluation experiment in
small-scale scenes

Datasets Gaussian Splatting Ours
SSIM PSNR LPIPS SSIM PSNR LPIPS

Chair 0.989 36.72 0.026 0.984 36.53 0.028

Mic 0.976 36.49 0.019 0.979 34.83 0.027

Ship 0.963 32.52 0.023 0.948 34.51 0.011

Lego 0.979 36.73 0.021 0.984 36.28 0.029

Ficus 0.977 35.12 0.022 0.985 34.23 0.039

Drums 0.968 27.23 0.083 0.946 26.81 0.066

Materials 0.943 30.98 0.052 0.954 31.11 0.058

Hotdog 0.984 38.19 0.018 0.989 38.98 0.027

3. We also conducted comparative experiments with other classic methods to obtain a better
evaluation of our proposed method’s quality.

As these table illustrates, our proposed approach outperforms the original method in
performance metrics. Regarding visual quality, our enhanced method produces results com-
parable to those of the original method. Furthermore, the utilization of our enhanced method
results in an average reduction in model size by a factor of 5.26 compared to models gen-
erated using the initial method. This reduction can be attributed to the lowered resource
overhead required for high-frequency information representation and spatial structure opti-
mization within scenes. However, our method lowers the maximum VRAM usage by about
only 5.61%, we think the increase in VRAM usage due to image storage limits the effective-
ness of our improvements in these scenarios. Figure 7 provides a visual representation of our
improvements’ impact on the model.

Tables 4 and 5 present the outcomes of quality evaluation experiments on large-scale
scenes, highlighting the performance of our method. The analysis of experimental data indi-
cates that our approach consistentlymaintains a significant advantage in terms of performance
overhead. With regard to rendering quality, it’s observed that our method experiences a slight
reduction in certain large, complex outdoor scenes, particularly those with abundant high-
frequency details, such as the ’stump’ and ’garden’ datasets. This marginal decline, while
present, is largely imperceptible and does not detract from the overall utility of our method,
especially when considering the substantial benefits in memory and computational efficiency
it offers.

Table 3 Resource utilization results of quality evaluation experiment in small-scale scenes

Datasets Gaussian Splatting Ours
Mem(MB) FPS VRAM(GB) Mem(MB) FPS VRAM(GB)

Chair 51.73 244+ 2.23 6.13 244+ 2.13

Mic 57.42 244+ 4.25 12.22 244+ 3.72

Ship 59.98 244+ 4.31 13.95 244+ 3.93

Lego 85.64 244+ 5.38 19.83 244+ 5.24

Ficus 39.11 244+ 4.74 8.58 244+ 4.52

Drums 65.06 244+ 5.16 12.71 244+ 5.09

Materials 35.42 244+ 5.33 6.39 244+ 4.94

Hotdog 26.30 244+ 5.42 7.03 244+ 5.25
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Fig. 7 In small-scale scenes, our improvement method performs well and significantly optimizes the spatial
sampling structure of Gaussian Splatting. We posit that the idea of integrating frequency information into
neural networks can be applied to other NeRF methods that use explicit scene representation

Importantly, this performance reduction is primarily confined to large outdoor environ-
ments. In contrast, for indoor scenes or smaller-scale settings, our method demonstrates
superior performance benefits. This distinction underscores the adaptability and effective-
ness of our approach across a diverse range of scenarios, reaffirming its value and applicability
in both resource-constrained and detail-rich rendering tasks.

The original method’s strength, we believe, stems from its unrestricted stacking of numer-
ous sample points at specific positions. This leads to a better representation of high-frequency

Table 4 Quality results of quality
evaluation experiment in
large-scale scenes

Datasets Gaussian Splatting Ours
SSIM PSNR LPIPS SSIM PSNR LPIPS

bicycle 0.732 25.32 0.186 0.729 24.61 0.194

garden 0.849 27.58 0.197 0.823 27.16 0.204

stump 0.798 26.19 0.245 0.789 25.52 0.230

treehill 0.642 22.47 0.298 0.638 22.66 0.331

room 0.933 30.03 0.202 0.923 31.92 0.203

counter 0.901 28.84 0.194 0.908 29.05 0.189

kitchen 0.917 30.18 0.128 0.919 30.99 0.139

bonsai 0.911 32.57 0.173 0.947 32.24 0.170

Truck 0.896 25.13 0.128 0.903 26.58 0.133

Train 0.815 21.34 0.206 0.839 22.91 0.203

Dr Johnson 0.903 28.68 0.252 0.872 29.03 0.297

Playroom 0.895 30.04 0.253 0.905 30.26 0.245
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Table 5 Resource utilization results of quality evaluation experiment in large-scale scenes

Datasets Gaussian Splatting Ours
Mem(MB) FPS VRAM(GB) Mem(MB) FPS VRAM(GB)

bicycle 1433.11 85.53 16+ 761.33 135.29 13.5

garden 1348.45 103.51 14.4 276.91 226.84 5.7

stump 1141.37 139.04 16+ 741.36 145.52 12.9

treehill 915.76 161.62 16+ 224.05 203.75 8.2

room 388.53 198.88 16+ 93.68 244+ 8.3

counter 283.46 213.79 16+ 97.77 244+ 7.4

kitchen 442.31 200.80 15.0 84.29 244+ 6.9

bonsai 302.90 184.95 14.2 148.15 239.40 7.1

Truck 607.64 157.30 14.5 152.46 179.65 9.2

Train 271.39 239.86 16+ 67.15 244+ 7.2

Dr Johnson 842.41 178.28 16+ 89.37 244+ 11.9

Playroom 598.05 206.58 16+ 102.85 238.68 10.3

information than the Enhanced Gaussian method. This is also the reason behind the large
model space occupied by the original method for these scenes. Regarding performance over-
head, our proposed method cuts the average model size by a factor of 4 and decreases VRAM
usage during training by 41.92%. In the best scenario, our method cuts the model size by a
factor of nearly 10, and decreases VRAM usage during training over 50%. Figure 8 presents
a comparison between the results obtained with the original method and our method across
different large-scale scene datasets.

It’s noteworthy that our method demonstrates superior performance over the original
approach across both small-scale and large-scale datasets,maintaining advantages inmemory
overhead and storage space utilization. This might appear counterintuitive at first glance.
Our analysis suggests that this is due to the fact that, although our method increases the cost
of rendering each Gaussian and incurs additional computational expenses in loss function
calculations during training, it significantly reduces the total number of Gaussians.Moreover,
our method prevents the generation of excessive, non-contributory Gaussians through the
Split and Clone processes during training, leading to at least a twofold decrease in the total
number of Gaussians compared to the original method. This reduction in Gaussians accounts
for the improved performance overhead on the same datasets. In other words, our method
does not directly enhance the performance of the original Gaussian rendering; instead, it
achieves reducedmemory consumption and performance overhead by decreasing the number
of Gaussians required to describe the scene. This also explains why, on certain datasets like
stump, our method substantially reduces the required storage space but does not significantly
improve the frame rate-the datasets still contain too many Gaussians, and the efficiency of
rendering each Gaussian is slightly lower than that of the original method.

Besides comparing our proposed method with the original, we also evaluated its perfor-
mance against other state-of-the-art NeRF approaches that use implicit scene representation,
include InstantNGP and Mip-NeRF360. InstantNGP is renowned for its rapid and efficient
training, standing as the current fastest implicit geometry representationmethod.Meanwhile,
Mip-NeRF 360 offers the highest rendering quality among existing NeRF approaches that
employ implicit geometry representation. Table 6 illustrates the comparative data between
our proposed method and the aforementioned techniques.
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Fig. 8 On large-scale datasets, our method still achieves excellent performance. Excluding the VRAM over-
head from data loading, our method’s VRAM overhead is less than half that of the original method, yet it
maintains a consistent rendering quality. These findings underscore the effectiveness of integrating frequency
information into NeRF’s explicit consideration

While our method exhibits a slower training speed compared to InstantNGP, it boasts
superior rendering efficiency. This can be attributed to the implicit scene representation,
which doesn’t store the position information of sample points and instead relies on iterative
methods for gradual scene information inference. Additionally, we noticed that our method
outperforms InstantNGP in terms of rendering quality for both small-scale and large-scale
scenes. We surmise that InstantNGP’s use of hash encoding for position information, while
accelerating scene information queries, might be a source of errors. The method’s reliance on

Table 6 Comparison results with other methods using the Mip-NeRF 360 dataset

Dataset Indoor(avg) Outdoor(avg)
Method|Metric PSNR Training FPS PSNR Training FPS

mip-NeRF 360 31.37 24h+ 0.003 25.06 24h+ 0.001

InstantNGP 29.13 13m 12.51 23.26 33m 7.37

Gaussian Splatting 30.41 2h02m 232.72 25.39 3h26m 80.38

Ours 31.05 58m 244+ 24.99 1h42m 178.52
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Table 7 Results of ablation experiment with outdoor scene in tanktemples dataset

Dataset Truck Train
Method|Metrics PSNR Mem VRAM PSNR Mem VRAM

No Emhanced Gaussian 26.02 428 10.6 21.87 158 13.2

No Frequency-Sensitive Loss 25.93 441 9.7 22.02 129 10.3

No Dynamic Clone 26.41 524 13.3 22.97 252 13.4

No Dynamic Split 26.24 483 12.9 22.56 176 11.7

Full 26.58 388 9.2 22.91 67 7.2

implicit scene representation also leads to a slower rendering speed, a fundamental challenge
that’s hard to address.

When juxtaposing our method with mip-NeRF 360, we observe a minor decline in render-
ing quality relative to it. Yet, our method stands out with distinct advantages in both training
and rendering phases. While this advantage is evident when comparing the original method
to mip-NeRF 360, our method further accentuates it.

4.4 Ablation experiment

We conducted ablation experiments targeting the three improvements presented in this paper
to ascertain their positive impact on the originalmethod. In these experiments,we sequentially
removed each step of improvement to evaluate their overall contribution to the method. We
employed high-resolution, large-scale scene datasets to underscore our method’s enhanced
impact. Employing these datasets enabled us to more effectively evaluate each step in our
method. Tables 7 and 8 display the experimental data from the ablation experiments.

As the tables illustrate, when comparing the model that uses the Enhanced Gaussian
to the one employing the regular Gaussian, there’s a notable decline in rendering quality
without the Enhanced Gaussian after an equal number of iterations. This quality degradation
can be attributed to the High-Frequency Diffusion Phenomenon. Specifically, without using
Enhanced Gaussian, the neural network will not be able to fit scene information well at
a low cost to cope with High-Frequency Diffusion Phenomenon. Simultaneously, as most
sampling points are utilized to fit high-frequency information, the representation quality of
low-frequency information in the scene deteriorates. The experimental results indicate that
our proposed Enhanced Gaussian has a significant advantage in representing high-frequency
information. Figure 9 showcases the rendering results’ transformation when applying the
Enhanced Gaussian.

Table 8 Results of ablation experiment with indoor scene in deep blending dataset

Dataset Playroom Dr Johnson
Method|Metrics PSNR Mem VRAM PSNR Mem VRAM

No Emhanced Gaussian 30.15 335 15.7 28.77 383 16+

No Frequency-Sensitive Loss 30.07 135 11.3 28.71 209 12.7

No Dynamic Clone 30.31 404 16+ 28.98 777 16+

No Dynamic Split 30.13 322 14.4 28.84 542 15.5

Full 30.26 102 10.3 29.03 89 11.9
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Fig. 9 Without using Enhanced Gaussian, the image exhibits significant blurring and loses a lot of details.
This outcome arises from the Enhanced Gaussian’s capability to bolster the model’s representation of high-
frequency scene information, thereby refining the image

Upon removing the frequency-sensitive loss function from ourmethod, we noted a distinct
reduction in rendering quality and a minor uptick in model size. This occurred because the
frequency-sensitive loss function played a crucial role in optimizing the spatial structure of
neural radiance field sampling. The function adeptly lowers the sampling density for low-
frequency details while amplifying it for high-frequency elements in the scene, resulting in
a more accurate scene representation. Figure 10 depicts the training outcomes influenced by
the frequency-sensitive loss function under different parameter settings.

The integration of frequency information into the loss function has nuanced implications
for rendering quality. Unlike the original Gaussian Splatting, where a higher density of
Gaussianswas generally better for scene representation, our approach alignsGaussian density
with the scene’s frequency content. This ensures that once a Gaussian adequately represents
a portion of the scene, its density does not increase unnecessarily, preventing over-saturation
and optimizing memory usage.
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Fig. 10 In the experiments, although using a frequency-sensitive loss function helps optimize rendering quality
and model size, the setting of the loss function must be within a certain range.If the loss function overly
favors high-frequency information, the rendered result exhibits undue sharpening and blurring. On the other
hand, if the loss function leans excessively towards low-frequency information, the rendered image appears
predominantly blurry

The results indicate that deploying a frequency-sensitive loss function with optimal set-
tings accelerates the neural network’s recovery of intricate high-frequency scene details and
alleviates the computational strain from high-frequency data reconstruction. Additionally, if
the sensitivity coefficient of high-frequency information is overly high, the neural network
will give priority to fitting high-frequency information in the scene. This leads to sharper
images but also introduces more artifacts.

Figure 11 shows partial experimental results of the ablation experiment on the dynamically
adaptive density control strategy. In this experiment, the Clone strategy and the Split strategy
of dynamically adaptive density control were successively removed. From the experimental
data and the accompanying graph, we deduce that the dynamic adaptive density control
method substantially diminishes the count of LCSPs. Specifically, both the dynamically
adaptive Clone strategy and Split strategy generate fewer LCSPs during training.

Concurrently, the dynamically adaptive Split strategy augments the neural network’s grasp
of scene frequency, facilitating rapid scene reconstruction. The dynamically adaptive Clone
strategy enhances the rendering quality of high-frequency information in the scene after
training. The results indicate that the dynamically adaptive control strategies for Split and
Clone are crucial for model lightweighting.

5 Discussion and conclusions

We show the benefits and limitations of explicit Gaussian Splatting in comparison to the
implicit NeRF method for modelling from a sampling theory perspective. We suggest three
enhancements toGaussian Splatting based on this examination. First, we design the Enhanced
Gaussian to strengthen the model’s ability to express high-frequency information. Next, we
devise a frequency-sensitive loss function to improve the neural network’s perception of
frequency-domain information and optimize the spatial sampling structure of the radiance
field scene. Finally,wepropose adynamically adaptive density control strategy that adjusts the
generation strategy of sample points based on the degree of scene background reconstruction.
This approach significantly reduces the quantity of redundant data in the model, resulting
in a lightweighting of the Gaussian Splatting approach that maintains its rendering quality
while reducing resource overhead. Our research suggests that the radiance field with explicit
scene representation holds considerable promise, meriting further enhancement.

However, our optimization strategy currently still overlooks extraneous data within a seg-
ment of the scene, such as someLCSPs (Low-Contrast Static Points). Specifically, ourmethod
cannot completely block the generation of LCSPs. This leads to the presence of redundant
data in the models generated by our approach. It is worth noting that this limitation primar-
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Fig. 11 Experimental results have shown that, in the initial stage of scene fitting, enhancing Split helps to
quickly reconstruct the background of the scene, whereas limiting Clone greatly reduces the redundant scene
fitting overhead. During the final scene fitting phase, constraining Split effectively manages the model’s size,
and bolstering Clone empowers the neural network to refine the fitting of high-frequency details

ily impacts the performance in large-scale outdoor scenes, where the abundance of LCSPs
can slightly reduce the efficiency of our method. Conversely, in smaller-scale indoor envi-
ronments, where LCSPs are less prevalent, our approach does not exhibit this performance
decrement, maintaining high effectiveness and accuracy. We anticipate that by thoroughly
purging the model of this redundant data, coupled with an effective sampling noise reduction
strategy and the utilization of Vulkan or CUDA, we can achieve enhanced radiance field
training and rendering outcomes on mobile platforms. In upcoming research, our objective
is to probe the efficiency of discrete radial fields grounded on sample points, sidestepping
subjective evaluations.

In summary, we introduce a potent lightweight enhancement for the 3DGaussian Splatting
Radiance Field, which significantly curtails performance demands and resource overheads,
all the while retaining rendering excellence.

5.1 Algorithm description

In this section, we offer pseudocode outlines of key algorithms to aid in understanding and
replication of our work.

The first algorithm detailed below computes the Frequency-Sensitive Loss function. This
specialized loss function is crucial for maintaining the balance between high-frequency detail
fidelity and overall image accuracy, thereby significantly enhancing the quality of synthesized
views by appropriately weighting different frequency components.

Algorithm 1 Frequency-sensitive loss function
1: function FrequencySensitiveLoss(rendered, ground_truth, low_ f req_radius, γ , ζ , λ_val)
2: low_rendered, high_rendered ← ProcessImage(rendered, low_ f req_radius)
3: low_truth, high_truth ← ProcessImage(ground_truth, low_ f req_radius)
4: l1_high ← L1Loss(high_rendered, high_truth)

5: l1_low ← L1Loss(low_rendered, low_truth)

6: ssim_high ← SSIM(high_rendered, high_truth)

7: ssim_low ← SSIM(low_rendered, low_truth)

8: loss ← λ_val×((1−γ )×l1_low+γ ×ssim_low)+(1−λ_val)×((1−ζ )×l1_high+ζ×ssim_high)

9: return loss
10: end function
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Following the Frequency-Sensitive Loss function, we introduce an image processing algo-
rithm crucial for the separation of images into their high and low-frequency components. This
procedure is instrumental in preparing the input data for our main algorithm by isolating fre-
quency bands, thereby enabling targeted processing of different image details.

Algorithm 2 Image frequency separation.
1: function ProcessImage(image_path, low_ f req_radius = 20)
2: image ← OpenImage(image_path) � Read and convert to grayscale
3: image_array ← ToArray(image)
4: f _trans f orm ← FFT2(image_array)
5: f _shi f t ← FFTShift( f _trans f orm)

6: mask ← CreateMask(rows, cols, low_ f req_radius) � Isolate low frequencies
7: f _low ← f _shi f t × mask
8: f _high ← f _shi f t × (1 − mask)
9: low_inverse_shi f t ← IFFTShift( f _low)

10: low_img_back ← IFFT2(low_inverse_shi f t)
11: high_inverse_shi f t ← IFFTShift( f _high)

12: high_img_back ← IFFT2(high_inverse_shi f t)
13: low_ f req_image ← ToImage(low_img_back)
14: high_ f req_image ← ToImage(high_img_back)
15: return low_ f req_image, high_ f req_image
16: end function

The Dynamically Adaptive Density Control Strategy plays a pivotal role in optimizing
the Gaussian Splatting process by adapting the density control mechanism throughout the
training phases. This strategy intelligently mitigates the issues of excessive Clone and Split
operations, thereby preventing the unnecessary proliferation of Light Cone Sample Points
(LCSPs) and enhancing the efficiency of scene reconstruction. Below is the pseudocode that
encapsulates the essence of this adaptive strategy:

Algorithm 3 Dynamically adaptive density control.
1: function AdaptiveDensityControl(P , L , α1, β1)
2: f 1 ← L

(α1×L+β1)
2 � Calculate Split weight

3: f 2 ← L × (α1 × L + β1)
2 � Calculate Clone weight

4: if f 1 > 1 then
5: PerformCloneOperation(P)
6: end if
7: if f 2 > 1 then
8: PerformSplitOperation(P)
9: end if
10: end function

Due to lab confidentiality and project phase, the full source code will be shared three
months post-article acceptance at https://www.github.com/FI3GS/Frequency-Importance-
Gaussian-Splatting. For immediate needs, please contact us for potential access to specific
code or files. Further details and the complete codebase can be found in the supplementary
material.

Data Availability The datasets used in this study include the Mip-NeRF360 dataset, available at http://
storage.googleapis.com/gresearch/refraw360/360_v2.zip, the Deep Blending dataset, accessible at http://
www-sop.inria.fr/reves/publis/2018/HPPFDB18/datasets.html, the Tanks & temples dataset, found at https://
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drive.google.com/file/d/11KRfN91W1AxAW6lOFs4EeYDbeoQZCi87/view?usp=sharing, and the Synthetic
NeRF dataset, located in the nerf_synthetic folder at https://drive.google.com/drive/folders/128yBriW1IG_3N
J5Rp7APSTZsJqdJdfc1. Original experimental data for this study can be obtained from the corresponding
author upon reasonable request after the project’s completion.
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