YuyaoGe's Website
YuyaoGe's Website
About
Publications
Posts
Projects
Light
Dark
Automatic
Reasoning
EMNLP2024论文分享 | Fewer is More:CoT示例要少而精
作者提出CoT-Influx方法,一种对CoT的示例和内容进行优化从而提高LLMs推理能力的方法,其核心思想是通过剪枝最大化有效信息的输入。
Yuyao Ge 葛钰峣
Oct 24, 2024
2 min read
论文分享
论文解读 | TTA:大模型回答置信度评估新方法
本文提出了一种新的方法,全面评估大模型多个候选答案的可信度,以减轻大模型对于错误答案的过度自信。
Yuyao Ge 葛钰峣
Mar 25, 2024
2 min read
论文分享
论文解读 | 3月最新用于游戏的大模型Agent综述
3月最新用于游戏的大模型Agent综述
Yuyao Ge 葛钰峣
Mar 21, 2024
1 min read
论文分享
论文解读 | Auto CoT——利用聚类自动生成CoT
在过去CoT有两种范式,一种是Zero-shot,在问题末尾添加"Let’s think step by step"。另一种Manual CoT(Few-shot CoT),每个例子由问题和推理链组成。第二种方法表现是否好取决于CoT写的好不好,不过这需要人手工来写。本文通过提出Auto-CoT这一方法使得Few-shot CoT可以自动生成,解放双手!
Yuyao Ge 葛钰峣
Mar 2, 2024
1 min read
论文分享
论文解读 | 思维链越长大模型越聪明?
思维链(Chain of thought - CoT)在过去的实践中已经证明对提升大模型的推理能力有显著帮助。然而,目前还没有一项工作解释思维链长度与推理能力之间的关系。本文围绕这一核心问题,围绕CoT做了系统实验,并给出许多有意思和反直觉的结论。
Yuyao Ge 葛钰峣
Feb 26, 2024
1 min read
论文分享
论文解读 | Graph-Guided Reasoning for Multi-Hop Question Answering in Large Language Models
提出了一种基于大模型的图引导的面向多步推理问题的推理方式。本文的主要贡献有两点:提出上述推理方式,提出允许变量定义的用于知识三元组提取的上下文学习方法
Yuyao Ge 葛钰峣
Nov 20, 2023
2 min read
论文分享
论文解读 | ReAct——LLM推理范式 推理+动作
LLM ReAct范式,在大语言模型中结合推理和动作
Yuyao Ge 葛钰峣
Oct 27, 2023
1 min read
论文分享
Cite
×